Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889751

RESUMO

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Assuntos
RNA Nuclear , Proteínas de Ligação a RNA , Animais , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Mamíferos , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Nuclear/genética , Proteínas de Ligação a RNA/genética
2.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329882

RESUMO

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Assuntos
Proteínas Nucleares , Transcrição Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA
3.
Nucleic Acids Res ; 50(3): 1583-1600, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048984

RESUMO

Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3' end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Estabilidade de RNA , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/metabolismo
4.
Cell Rep ; 22(10): 2584-2592, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514088

RESUMO

The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-ß/bone morphogenetic protein (TGF-ß/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-ß1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Centrossomo/metabolismo , Humanos , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
5.
Methods Enzymol ; 525: 371-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23522479

RESUMO

Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully understood. Considering the complexity and dynamics of centriole-related proteomes and the first-pass analyses reported so far, it is likely that further insight might come from more thorough proteome analyses under various cellular and physiological conditions. To this end, we here describe methods to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics.


Assuntos
Centrossomo/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Cílios/metabolismo , Humanos
6.
EMBO J ; 30(8): 1520-35, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21399614

RESUMO

Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.


Assuntos
Centrossomo/metabolismo , Proteínas/metabolismo , Proteômica , Centríolos/química , Centríolos/metabolismo , Centrossomo/química , Cílios/metabolismo , Células HeLa , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Organelas , Proteínas/química
7.
Methods Mol Biol ; 658: 255-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20839109

RESUMO

The ability to purify cell organelles and protein complexes on a large scale, combined with advances in protein identification using mass spectrometry, has provided a wealth of information regarding protein localization and function. A major challenge in these studies has been the ability to identify bona fide organelle components from a background of co-purifying contaminants because none of the available biochemical purification protocols afford pure preparations. Since this situation is unlikely to change alternative strategies have been devised to meet this challenge by making use of the information inherent in the fractionation profile of organelles isolated by density gradient centrifugation. In this chapter we describe strategies based on protein correlation profiling and quantitative mass spectrometry to sort out likely candidates. The organelle inventories defined by these methods are suitable to guide future functional experiments.


Assuntos
Aminoácidos/química , Marcação por Isótopo/métodos , Organelas/química , Proteínas/análise , Proteínas/química , Proteômica/métodos , Células Cultivadas , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...